MEG: OSGi Based Operational Management of Mobile Devices

Vadim Draluk
Motorola, Inc.
Goals

• Creating a comprehensive and uniform mobile device management ecosystem encompassing:
 – Local device settings
 – Device monitoring
 – Over-the-air (OTA) device settings
 – OTA application lifecycle control

• Un-coupling the lifecycles of the device and the software, allowing for software installation and tuning:
 – In the factory
 – In the distribution center
 – At the point of sale
 – After the sale, with the device in user’s hands

• Scaling down to mass-market devices
Principles

• Use of OSGi’s dynamic nature in maximizing control over the lifecycles of:
 – Applications
 – Basic framework software
 – Branding elements

• Reliance on existing industry-standard protocols
 – Protocol-neutrality
 – Multiple protocol support

• Coexistence with native and legacy management systems

• Employment of industry-standard meta-data models for management

• Maximum possible compatibility with other J2ME™ configurations (JSR 246)
Systems Management Meta-data Models

- **SNMP**
 - The most widely deployed systems management model
 - Lacking in richness and capabilities

- **JMX (JSR 3, 160)**
 - De-facto standard in J2EE™ servers and applications
 - Lacking the mobile-specific infrastructure
 - Unknown in the mobile industry

- **CIM-WEBM (JSR 48)**
 - Rich meta-model and set of data models for systems and applications management
 - Strongly supported by Microsoft
 - No noticeable penetration into either Java™ or mobile

- **FMA (JSR 9)**
 - A generic distributed systems management standard, originating in disk storage management applications
 - Little traction in the industry
Device Management Tree (DMT) as an Industry-standard Meta-model

- Defined by OMA DM, associated with the OMA DM (SyncML DM) protocol
- Tree of nodes
- All nodes have
 - Name
 - Type
 - Version
 - Title
 - Timestamps
- Leaf nodes have simple values
- Nodes can support all or some of following operations
 - ADD
 - DELETE
 - REPLACE
 - GET
 - EXEC (with parameter)
- ACL-based authorization model per server, per operation, per sub-tree
MEG Adopting the DMT

• Advantages
 – Emerging de-facto standard in the mobile industry
 – Supported by a popular protocol

• Steps taken
 – Separation of the DMT as a meta-data model from OMA DM as a protocol
 – Expanding the notion of principals of the management process
 – Data consistency and integrity capabilities enhanced

• Compatibility fully preserved

• Future enhancements to be advanced through OMA DM
 – Rich data semantics of sibling nodes – vectors, sets
 – Enhanced data constraints
DMT Use: Applications and Agents

- Applications: units of execution activated directly by the user
 - All applications’ parameters are mapped into the DMT
 - OSGi’s Config Admin service data
 - “Native” DMT information
 - Settings applications interface the DMT
- Agents: units of execution activated due to an internal or external event
 - OMA DM
 - OMA CP
 - IOTA
 - SIM-based provisioning
Plug-ins: Data Model Extensibility

• Two data store models for the DMT
 – DMT Registry – store controlled by the DM service
 – DMT plug-ins – stores and data sources abstracted away by data plug-ins
 • OSGi framework info – installed bundles, services, applications
 • Log data
 • Monitors
 • Device readings
 • SIM config data

• Operational extensibility through EXEC plug-ins
 – Management operations associated with DMT nodes
 – Fine-grained policies for operations based on DMT ACLs
Overall Benefits

- Device management radically simplified through:
 - Uniformity of the configuration data
 - Consistent monitoring techniques
- Device management becoming highly adaptable to specifics of:
 - MAs
 - Carriers
 - Regions
- Standardization leads to cost reduction in:
 - Server-side infrastructure
 - Software development
THANK YOU