Data Capture in IBM WebSphere Premises Server™

Aldo Eisma, IBM
IBM Sensor and Actuator Solutions

Networked devices deliver new data & act upon insights

Enabling process and business transformation from new operational insights

S&A Solutions Framework

New Data → New Insight → Process Innovation
The IBM Sensor & Actuator Solutions Framework

Systems Management Domain

Sensor Domain
- Dock Door Reader
- Conveyor Belt Reader
- Handheld / Portable Reader
- RFID Label / Tag Printers
- Visual Indicators
- Switches and Sensors

Data Capture Domain
- Open platform for extensible device integration;
- Flexible Distributed or Centralized Topology

Premises Domain
- Business Context & Process Context;
- Enterprise - IT class platform

Enterprise & Business Application Domain

Business Process Integration Domain

Object Directory Domain
- Portal Server
- Product Information Services EPC, WPC

IBM Integration Server

IBM WebSphere Premises Server

DB2

End to End Reliable Messaging Ensures Data Integrity

Persistent Data

Flexible Integration
Some Solution Proof Points in 2007

Airbus
Industrial Tracking & Visibility for Supply Chain Manufacturing (JIT/JIS)

Baxter
Pharmaceutical Track and Trace for High Value Drugs

Gerry Weber
Retail Supply Chain & Logistics for High Value Goods Tracking

McLane
Distribution Supply Chain & Visibility For Reusable Asset Tracking

Metro
Retail Supply Chain & Logistics For Supply Chain Visibility

"IBM definitely is ahead of the others, because they’re actually out there co-inventing with the customers."

“…IBM is a leader in the RFID middleware and software market. The Sensors and Actuators division offers a full stack software and services solution for RFID. Comprising middleware, local, and networked server and enterprise-wide software, IBM's WebSphere RFID Premises Server 6.0 provides a service-oriented architecture, enabling strong automation capabilities that maximize the value of RFID."

Honda Italia
Industrial Tracking & Visibility for Manufacturing WIP Visibility

Metro
Retail Supply Chain & Logistics For Supply Chain Visibility
IBM WebSphere Sensor Software

Using OSGi to turn data into new operational insights

- Enable a flexible, scaleable, manageable and extensible integration model for data capture.
- Extend the solutions ecosystem with device manufacturers and ISVs.
SODA - Service Oriented Device Architecture
Exposing device interfaces as SOA services over a network

See “SODA: Service Oriented Device Architecture” in IEEE Pervasive Computing
What does Data Capture do?

1. Provides a common service oriented interface to sensor devices.
2. Manages communication protocol and data format mapping.
3. Establishes a communication bus to Premises Server.
Where is Data Capture deployed?

- Deployed on distributed devices (smart devices or controllers).
- Can also be deployed on the Premises Server OSGi runtime.
- Supported environments are independent of runtime hardware.
- Runtimes + applications are in the range of 50 to 100 bundles.
The Eclipse OHF SODA technology project

- Open Healthcare Framework.
 - Addresses interoperability between applications and systems within and across healthcare organizations.
- IBM contributed SODA to Eclipse OHF in March 2007:
 - Device Kit.
 - Service Activator Toolkit (SAT).
What is the Device Kit?

- Enabling technology for Data Capture.
- It provides a framework for developing device agents.
 - Eclipse tooling for generating the components required to interface with a hardware device.
 - Generated code is “built out” to provide a fully functional device agent.
- Provides a uniform method of interfacing to hardware devices.
- A set of runtime components.
- Installed as an Eclipse feature.
Component interaction
Layers are loosely coupled and can be used independently
Distributed messaging in the Device Kit

- Device Kit provides a publish/subscribe notification service.
- An application registers itself specifying the topics in which it is interested and publishes.
- Micro Broker bridges messages between Data Capture and Premises OSGi runtimes.
The Device Kit Markup Language (DKML)

- XML markup language that defines the device controls, messages and configuration settings used by the device agent to communicate with and control the hardware device.
- Transports, devices, adapters and profiles all have associated DKML files.
- Device Kit tooling generates transport, device, adapter and profile code from their respective DKML files.
Adding a temperature sensor to a tag read location

- Example: USB dongle from EclipseCon Device Kit tutorial:
 - Temperature sensor.
 - 2 LEDs.
 - Push-button.
- Access via serial port.
- Command specification:
 - Send ‘i’, device will reply ‘id: usb-gpio-v1’.
 - Send ‘t’, device will reply with ‘temp: 25.23’.
 - Send ‘b’, device will reply with button state: ‘button: 0’ or ‘button: 1’.
 - Button will send asynchronous button: messages above.
 - etc.
Using the Device Kit tooling to develop a new adapter

1. Generate skeleton bundle projects using Device Kit wizards.
2. Write DKML device and profile specification.
3. Regenerate and complete transport and profile implementation.
 • Generated transport and profile require manual coding, device code does not.
4. Test the new adapter for profile compliance.
5. Export, publish and then deploy feature on Premises Server for provisioning to Data Capture.
Step 1: Generate skeleton bundle projects using Device Kit wizards
Step 2: Write DKML device and profile specification

```xml
<dkml>
  <device id="GpioDongleDevice" packagebase="org.eclipse.soda.dk">
    <command id="ReadTemperature">
      <message>
        <ascii>t</ascii>
      </message>
    </command>
    <signal id="TemperatureCelciusReport">
      <message>
        <ascii>temp: </ascii>
        <tokens>\r\n</tokens>
        <parameter type="string">
          <key>DegreesCelcius</key>
          <index>6</index>
        </parameter>
        <filter>
          <bytes format="hex">FF, FF, FF, FF, FF</bytes>
        </filter>
      </message>
    </signal>
  ...
</dkml>
```
Sometimes DKML can be generated from a specification

1. EPCGlobal LLRP Spec
2. DKML Generator
3. DKML
4. DKML to Java Generator
5. Device
Step 3: Regenerate and complete transport and profile implementation
Step 4: Test the new adapter for profile compliance
Step 5: Deploy and provision the new adapter (and application)
Service are dynamically created and configured using the OSGi ManagedServiceFactory concept

- Premises Server and Device Kit test tooling generate create, update and delete actions for ConfigAdmin.
- Service Activator Toolkit supports a declarative services and factories.
Summary

• Build upon an *service oriented* platform for flexible business process innovation:
 • OSGi.
 • Web Services + Business Process Execution Language.
• Leverage *open standards* across the end to end solution:
 • Eclipse, Apache, OSGi.
• Dynamic partner *value network* provides the domain expertise and differentiating capabilities that can be leveraged to meet specific solution needs.
Links and references

- IBM WebSphere Premises Server
- Open Healthcare Framework (OHF) Project SODA, Device Kit, & Service Activator Toolkit
 http://www.eclipse.org/ohf/components/soda/
- SODA Update Site for Eclipse 3.3.1.1
 http://download.eclipse.org/technology/ohf/soda/dk/update-site/weekly/
- Building Service Oriented Bundle Architectures
- Where's the Data? A Device Kit Tutorial
- SAT Blog
 http://eclipse-sat.blogspot.com/
- SODA Forum http://sensorplatform.org/soda/forum/